TJNAF PROPOSAL

Initial Exploration of Semi-exclusive Scattering in x>1 Region with $^{3,4}\!He(e,e'p)$ Reactions

W. Bertozzi (co-spokesperson), S. Gilad (co-spokesperson), K. Fissum, D. Rowntree,
J. Zhao (Spokesperson), Z. Zhou
Massachusetts Institute of Technology

J. Templon
University of Georgia

M. Epstein

California State University, Los Angeles

 ${
m and}$ The Hall-A Collaboration

Abstract

We propose to study high momentum components in $^{3,4}He$ via (e,e'p) reactions at large Q^2 and x>1 in the missing energy range from the two-body breakup into the continuum. At $Q^2\simeq 2$, $3~(\text{GeV/c})^2$, we propose to measure in parallel kinematics the $^{3,4}He(e,e'p)$ cross-sections at y=-300~MeV/c (x=1.61,1.51, respectively) and, further away from the quasi-elastic peak, at y=-450~MeV/c (x=1.98,1.80, respectively). To further our understanding of the underlying currents, a separation of the longitudinal(L)/transverse(T) structure functions in $^3He(e,e'p)$ is proposed at $Q^2\simeq 2~(\text{GeV/c})^2$ and y=-300~MeV/c (x=1.61). These systematic studies of the semi-exclusive reactions in the x>1 side of the quasi-elastic peak will provide new detailed information on high momentum components and NN correlations in nuclei and will help to constrain modern theoretical calculations on few-body systems. The kinematics are selected such that meson exchange currents and final state interaction effects will be suppressed. Hence, NN correlations in nuclei can be studied with less ambiguity.